	CT.
ист	Листов

Раздел IV. ОПРЕДЕЛЕНИЕ ПОСАДКИ И ОСТОЙЧИВОСТИ СУДНА В РАЗЛИЧНЫХ ЭКСПЛУТАЦИОННЫХ УСЛОВИЯХ

Задание:

- Определить массу перемещаемого и принимаемого груза для увеличения исходной осадки судна кормой на 0.5 метра.
- Определить массу перемещаемого с борта на борт судна груза для обнажения пояса наружной обшивки, лежащего ниже ватерлинии на 0.3 метра.
- Определить изменение метацентрической высоты судна после подъёма на промысловую палубу трала с уловом 80 т.
- На какое расстояние от плоскости мидель-шпангоута должен быть принят груз массой 300 т, чтобы осадка судна кормой не изменилась.
- Определить изменение метацентрической высоты судна при заливании промысловой палубы судна слоем воды 0.3 метра.
- Определить, на сколько уменьшилась метацентрическая высота судна от обледенения, если период качки увеличился на 20%.
- Определить угол крена судна на установившейся циркуляции при скорости судна на прямом курсе 12 узлов.
- Найти метацентрическую высоту судна, сидящего на мели без крена с осадкой носом и кормой на 0.5 м меньше, чем на глубокой воде. Определить критическую осадку, при которой судно начнёт терять остойчивость. Определить статический угол крена.
- Определить динамические углы крена от динамически приложенного кренящего момента, от давления ветра для двух случаев положения судна. В первом случае наклонения происходят с прямого положения, во втором – судно накренено на наветренный борт на угол, равный амплитуде бортовой качки.
- Определить динамический момент, опрокидывающий судно, имеющее крен на наветренный борт, равный амплитуде бортовой качки.

4.1. Определим массу перемещаемого или принимаемого груза для увеличения исходной осадки судна кормой на 0,5 м.

Перемещение:

В случае перемещения груза массовое водоизмещение судна остается постоянным:

$$M=4708,9T$$

Осадку судна носом примем неизменной:

$$T_H = const = 4.0 \text{ M}$$

Найдём осадку кормой:

$$T\kappa 1 = T\kappa + 0.5$$

 $T\kappa 1 = 6.15 + 0.5 = 6.65 \text{ m}$

По приложению 2.2, используя М и Тк1 найдем Хс после перемещения груза:

$$x_{c1} = -6.0 M$$

Определим расстояние, на которое переместили груз l_x:

$$l_x = -0.5L_{nn};$$

 $l_x = -0.5*96.4 = -48.2 \text{ M};$

Масса перемещаемого груза равна:

$$m_{ppy3a} = \frac{M(X_{c1} - X_c)}{l_x}$$

$$m_{ppy3a} = \frac{4708.9 \cdot (-6.0 - (-4.39))}{-48.2} = 157.3 \text{ T}$$

Прием:

При приёме груза осадку судна носом примем неизменной:

$$TH1 = TH = 4.0M$$

Найдём осадку кормой:

$$T\kappa 1 = T\kappa + 0.5$$

 $T\kappa 1 = 6.15 + 0.5 = 6.65 \text{ m}$

				Лист
Изм	Ред	№ Докум	Подпись	

По приложению 2.2, используя Th1 и Tk1 найдем и M_1 после перемещения груза:

$$M_1 = 5100T$$

 $Xc_1 = -5.0M$

Найдём абсциссу центра тяжести принимаемого груза:

$$m_{{}_{\Gamma DV3a}} = M_1 + M$$
 $m_{{}_{\Gamma DV3a}} = 5100 - 4708,9 = 391,1 \ {}_{T}$

Определим куда следует принять груз:

$$x = \frac{M_1 \cdot x_{c1} - M \cdot x_c}{m_{_{\mathcal{Z}PY3a}}}$$
$$x = \frac{5100 \cdot (-5.0) - 4708.9 \cdot (-4.39)}{391.1} = -12.3 \,\mathrm{M}$$

4.2. Определим массу перемещаемого с борта на борт судна груза для обнажения пояса наружной обшивки, лежащего ниже ватерлинии на 0,3 м.

Определим массу перемещаемого груза по формуле начальной остойчивости:

$$m = \frac{M \cdot h}{l_{v}} \cdot tg(\theta)$$

Определим статистический угол крена судна при перемещении груза с борта на борт (Рисунок 4.1)

$$\theta = arctg \frac{0.3}{B/2}$$

$$\theta = arctg \frac{0.3}{16/2}$$

$$\theta = 2.15^{\circ}$$

			-
Изм	Ред	№ Докум	Подпись

Рисунок 4.1 – Перемещение груза с борта на борт.

Масса перемещаемого груза:

$$m_{_{zpy3a}} = \frac{4708.9 \cdot 0.76}{16} \cdot 0.038$$
$$m_{_{zpy3a}} = 8.5_{_{T}}$$

С помощью ДСО, используя выражение:

$$m = \frac{Ml}{l_v \cos \theta}$$
, где:

 $l_y = B = 16.0$ – расстояние на которое переместили груз, равное ширине судна, $\theta = 2.15^{\circ}$ - статический угол крена при перемещении груза с борта на борт, l – плечо статической остойчивости при угле крена θ ;

По ДСО находим плечо статической остойчивости при угле крена $\theta = 2.15^{\circ}$:

$$l = 0.02 \,\mathrm{m};$$

Получаем массу груза:

$$m = \frac{4708.9 \cdot 0.029}{16.0 \cdot 0.999} = 294.6 \cdot 0.029 = 8.6 \text{ T}.$$

				Лис
				011101
Изм	Ред	№ Докум	Подпись	

4.3. Определим изменение метацентрической высоты судна после подъема на промысловую палубу судна трала с уловом 80 т.

После приема груза массой 80 т массовое водоизмещение судна стало:

$$\mathbf{M}_1 = \mathbf{M} + \mathbf{80}$$
 $\mathbf{M}_1 = \mathbf{4708.1} + \mathbf{80} = \mathbf{4788.1} \; \mathbf{T}$

по приложению 2.10, используя полученное массовое водоизмещение \mathbf{M}_1 найдем площадь ватерлинии:

$$S_{BI} = 1177.5 \text{ m}^2$$

Изменение средней осадки от приема на судно улова массой 80 т:

$$\delta T = \frac{m}{\rho \cdot S_{_{6.7}}}$$

$$\delta T = \frac{80}{1,025 \cdot 1177.5} = 0,66 \text{M} \approx 0,07 \text{M}$$

Для определения изменения метацентрической высоты судна используем формулу начальной остойчивости:

$$\delta h = \frac{m}{M+m} \left(T + \frac{\delta T}{2} - z - h \right)$$

$$\delta h = \frac{80}{4708.1 + 80} \left(5.08 + \frac{0.07}{2} - 3.32 - 0.76 \right) = 0.017 \text{M}$$

4.4. Определим, на какое расстояние от плоскости мидель - шпангоута должен быть принят груз массой 300 т, чтобы осадка судна кормой не изменилась.

После приема груза массой 300 т массовое водоизмещение судна стало:

$$\mathbf{M}_1 = \mathbf{M} + 300$$

 $\mathbf{M}_1 = 4708.1 + 300 = 5008.1 \text{ T}$

Осадку судна кормой примем неизменной:

$$T\kappa = 6,15 \text{ M}$$

По приложению 2.2, используя:

-М и Тк найдем хс: $x_c = -4.4 \text{ м}$

- M_1 и Тк найдем xc₁: $x_c = -3.4$ м

				Л
				711
Изм	Ред	№ Докум	Подпись	

Абсцисса центра тяжести, принимаемого груза будет равна:

$$x = \frac{M_1 \cdot x_{c1} - M \cdot x_c}{m}$$
$$x = \frac{5008.1 \cdot (-3.4) - 4708.1 \cdot (-4.4)}{300} = 12.1 M$$

4.5. Определим изменение метацентрической высоты судна при заливании промысловой палубы судна слоем воды 0,3 м.

Метацентрическая высота меняется вследствие приема груза и из-за наличия свободной поверхности.

В нашем случае грузом является вода. Найдем её массу:

$$m = \frac{V_{\scriptscriptstyle b}}{\rho}$$

$$V_{\scriptscriptstyle b} = l_{\scriptscriptstyle nany\delta_{bl}} \cdot B \cdot t \; ,$$

где l – длинна промысловой палубы , t – слой воды на промысловой палубе, B - ширина промысловой палубы.

$$l_{nany\delta bi} = 2/3 \cdot L_{\Pi\Pi}$$

$$l_{nany\delta bi} = 2/3 \cdot 103,7 = 69,1 M$$

Значит, масса воды, попавшая на промысловую палубу:

$$m = \frac{69,1 \cdot 16 \cdot 0,3}{1.025} = 323,6 \text{ T}$$

Массовое водоизмещение судна:

$$M_1 = M + m$$

 $M_1 = 4708.9 + 323.6 = 5032.5 \text{ T}$

Объемное водоизмещение судна:

$$V = \frac{M_1}{\rho}$$

$$V = \frac{5032.5}{1.025} = 4909.8 M^3$$

По приложению 2.10, используя полученное массовое водоизмещение $\,M_1\,$ найдем площадь ватерлинии:

$$S_{BJI} = 1205,4 \text{ m}^2$$

	_		Ли
Į	№ Докум	Подпись	

Изменение средней осадки после заливания промысловой палубы:

$$\delta T = \frac{m_{e}}{\rho \cdot S_{BI}}$$

$$\delta T = \frac{323.6}{1,025 \cdot 1205.4} = 0.26 M$$

Найдем момент инерции площади свободной поверхности воды относительно продольной центральной оси:

$$i_x = k \cdot l \cdot b^3 = \frac{l_{naxy6bi} \cdot B^3}{12}$$

$$i_x = \frac{69.1 \cdot 16^3}{12} = 23590 M^4$$

Для определения изменения метацентрической высоты судна воспользуемся формулу начальной остойчивости:

$$\delta h = \frac{m}{M+m} \left(T + \frac{\delta T}{2} - z - h - \frac{i_x}{V} \right)$$

$$\delta h = \frac{323.6}{4708.1 + 340.1} \left(5.08 + \frac{0.26}{2} - 3.32 - 0.76 - \frac{23590}{4924.8} \right) = -0.247 \text{M}$$

Метацентрическая высота после заливания промысловой палубы:

$$h_1 = h + \delta h$$

 $h_1 = 0.76 - 0.247 = 0.513 M$

4.6. Определим, на сколько уменьшилась метацентрическая высота судна от обледенения, если период качки увеличился на 20%.

Период бортовой качки судна в условиях обледенения определяется по формуле:

$$\tau_{\theta} = \frac{C \cdot B}{\sqrt{h}}$$

Т.к. период бортовой качки в условиях обледенения увеличился на 20%, то:

$$\tau_{\theta 1} = 1.2 \cdot \tau_{\theta 2}$$

$$\frac{C \cdot B}{\sqrt{h_1}} = 1.2 \cdot \frac{C \cdot B}{\sqrt{h_2}}$$

1	Ред	№ Докум	Подпись	

$$h_1 = \frac{h}{1.44}$$

Изменение метацентрической высоты судна:

$$\delta h = h_1 - h = \frac{h}{1.44} - h = h \cdot (0.694 - 1) = -0.306 \cdot h$$

$$\delta h = -0.306 \cdot 0.76 = 0.23 M$$

4.7. Определим угол крена судна на установившейся циркуляции при скорости судна на прямом курсе 12 уз.

Наибольший кренящий момент на циркуляции найдем по формуле:

$$M_{\kappa p} = 0.23 \frac{M \cdot v^2}{L} \cdot \left(z_g - \frac{T}{2} \right)$$

$$M_{\kappa p} = 0.23 \frac{4708.1 \cdot 6.2^2}{130.7} \cdot \left(6.89 - \frac{5.08}{2}\right) = 1635kH$$

Угол крена на циркуляции равен:

$$\theta^{O} = 57.3 \frac{M_{\kappa p}}{M \cdot g \cdot h}$$

$$\theta^o = 57.3 \frac{1635}{4708.1 \cdot 9.8 \cdot 0.76} = 2.672^o \approx 2.7^o$$

Проверим требования, предъявляемые Российским Морским Регистром Судоходства:

$$\theta^{o} = 2.7^{o} < 12^{o}$$

В данном варианте эксплуатационной нагрузки судна угол крена на циркуляции удовлетворяет требованиям Российского Морского Регистра судоходства.

4.8. Найдем метацентрическую высоту судна, сидящего на мели без крена с осадкой носом и кормой на 0,5 м меньше, чем на глубокой воде.

				Лист
				711101
Изм	Ред	№ Докум	Подпись	

Определим критическую осадку, при которой судно начинает терять остойчивость. Находим осадки судна носом и кормой после посадки судна на мель по формулам:

$$TH1 = TH - 0.5$$
 $TH1 = 4.0 - 0.5 = 3.5 M$
 $TK1 = TK - 0.5$
 $TK1 = 6.15 - 0.5 = 5.65 M$

Находим среднюю осадку судна по формуле:

$$T = \frac{T_{h1} + T_{k1}}{2}$$
$$T = \frac{3.5 + 5.65}{2} = 4.6M$$

По приложению 2.2, по осадкам носом и кормой находим массовое водоизмещение судна после посадки на мель:

$$M_a = 4200_T$$

По приложению 2.3, по осадкам носом и кормой находим аппликату центра величины судна после посадки на мель:

$$z_{ca} = 2.66 M$$

По приложению 2.4, по осадкам носом и кормой находим метацентрический радиус судна после посадки на мель:

$$r_a = 5 M$$

Аппликата метацентра судна после посадки на мель:

$$z_{ma} = z_{ca} + r_a$$

$$z_{ma} = 2.66 + 5 = 7.66 M$$

Метацентрическую высоту судна сидящего на мели находим по формуле:

$$h_a = z_{ma} - \frac{M}{M_a} \cdot z_g$$

$$h_a = 7.66 - \frac{4708.1}{4200} \cdot 6.89 = -0.06 M$$

Проверим требования, предъявляемые Российским Морским Регистром Судоходства:

$$h_a > 0.05 M$$

$$h_a = 0.06 M > 0.05 M$$

	1		
Изм	Ред	№ Докум	Подпись

В данном варианте эксплуатационной нагрузки остойчивость судна на мели удовлетворяет требованиям Российского Морского Регистра судоходства к аварийным судам.

при изменении уровня воды значение Va*Zma так же изменяется, и при так называемой критической осадке Ткр становится равным V * Zg. Начиная с этого момента при дальнейшем уменьшении осадки судно начнет валиться на бок. Для определения Ткр строим кривую, показывающую зависимость Va*Zma от Т {рисунок 4.2}

Занесем в таблицу 4.1 осадки судна носом и кормой для нескольких произвольных вариантов загрузки судна:

$$TH1 = TH - t$$
 $T\kappa 1 = T\kappa - t$
 $t = 0 : 0.5 : 1.0 : 1.5$

Таблица 4.1. - Значения осадок судна носом и кормой

Тн, м	3,5	3,0	2,5	2,0
Тк, м	5,65	5,15	4,65	4,15
Тср, м	4,6	4,1	3,6	3,1

По приложению 2.2, по осадкам носом и кормой находим массовое водоизмещене для каждого из вариантов. Найдем объемные водоизмещения по формуле:

$$V = M / \rho$$

Полученные результаты занесем в таблицу 4.2

Таблица 4.2. - Значения массовых и объемных водоизмещении судна

Тн, м	4.6	4.1	3.6	3.1
М, т	4200	3400	3250	2500
V, m ³	4098	3317	3170	2439

По приложению 2.3, по осадкам носом и кормой находим аппликаты центров величин. (таблица 4.3)

			Лист	
Изм	Ред	№ Докум	Подпись	

Таблица 4.3. - Значения аппликат центров величин

Тн, м	3,5	3,0	2,5	2,0
Тк, м	5,65	5,15	4,65	4,15
Zc, m	2.66	2.35	2.05	1.8

По приложению 2.4, по осадкам носом и кормой находим метацентрический радиус судна для каждого из вариантов (таблица 4.4).

Таблица 4.4. - Значения метацентрических радиусов

Тн, м	3,5	3,0	2,5	2,0
Тк, м	5,65	5,15	4,65	4,15
r, m	5.0	5.5	5.9	6.6

Рассчитаем аппликату метацентра судна для каждого из вариантов по формуле:

$$z_{ma} = z_{ca} + r_a$$

Результаты занесем в таблицу 4.5

Таблица 4.5 - Значения аппликат метацентра

Тср, м	4,6	4,1	3,6	3,1
Zm, m	7,66	7,85	7,95	8,4

Значения функции Vi*Zmi в зависимости от значений средней осадки судна занесем в таблицу 4.6.

Таблица 4.6. - Значения функции Vi*Zmi

Тср, м	4,6	4,1	3,6	3,1
Vi*Zmi, м ⁴	31391	26038	25202	40488

График зависимости Vi*Zmi от T приведен на рисунке 4.2. по рисунку 4.2 по значению V* Zg = 31650 м4 определяем значение критическ осадки:

$$T_{\text{критическое}} = 4,84 \text{м}$$

<u> </u>			
Изм	Ред	№ Докум	Подпись

4.9. Определим динамические углы крена от динамически приложенного кренящего момента, от давления ветра для двух случаев положения судна. В первом случае наклонения происходят с прямого положения, во втором судно накренено на наветренный борт на угол, равный амплитуде бортовой качки.

По приложению 2.9, используя среднюю осадку, судна, снимаем с графиков площадь парусности и плечо парусности.

$$S = 1100 \text{ m}^2$$

$$Z = 6.09 \text{ M}$$

Для судна неограниченного района плавания и в зависимости от плеча парусности из документации Российское Морского Регистра Судоходства выбираем значение давления ветра:

$$p = 1173 \text{ H/m}^3$$

Динамически приложенный кренящий момент вычисляем по формуле:

$$M_{\kappa p} = 0.001 \cdot p \cdot S \cdot z$$

 $M_{\kappa p} = 0.001 \cdot 1173 \cdot 1100 \cdot 6.09 = 7858 H \cdot M$

В судовой отчетной документации выбираем площадь скуловых килей:

$$A_{\kappa} = 2 \cdot 14, 2m^2$$

Найдем отношение суммарной площади скуловых килей A к произведению LB:

$$\frac{A}{L \cdot B} \cdot 100\% = \frac{2 \cdot 14.2}{103.7 \cdot 16.0} \cdot 100\% = 1.7\%$$

Из найденного отношения по таблице Регистра выбираем коофициент,

учитывающий влияние скуловых килей:

$$k = 0.92$$

Найдем отношение ширины судна к его средней осадке

$$\frac{B}{T} = \frac{16.0}{2.08} \cdot = 3.1$$

По найденному отношению из таблиц Регистра выбиираем значение безразмерного множителя x_1 :

$$x_1 = 0.91$$

Рассчитаем коэффициент общей полноты для данного варианта загрузки судна:

$$\delta = \frac{V}{L \cdot B \cdot T}$$

$$\delta = \frac{4594}{103.7 \cdot 16 \cdot 5.08} = 0.545$$

По коэффициенту общей полноты из таблиц Регистра выбираем значение безразмерного множителя x_2 :

$$x_2 = 0.89$$

Найдем параметр Y который принимают в зависимости от района плавания судна и отношения $h^{0.5}/\,B$

$$\frac{\sqrt{h}}{R} = \frac{\sqrt{0.76}}{16} = 0.05$$

По найденному отношению из таблиц Регистра выбираем значение Ү:

$$Y = 25.0$$

Амплитуду пачки вычислим по формуле:

$$\theta_m = k \cdot x_1 \cdot x_2 \cdot Y$$

 $\theta_m = 0.92 \cdot 0.91 \cdot 0.89 \cdot 25.0 = 18.628 \approx 18.6^{\circ}$

Динамические углы крена при действии на судно момента Мкр находят из условия равенства работ восстанавливающего и кренящего моментов при наклонении судна в первом случае от $\mathbf{0}^{\mathbf{0}}$ и до $\theta_{_{II}}^{\mathbf{0}}$ во втором случав от $\theta_{_{II}}^{\mathbf{0}}$. восстанавливающего Работы кренящего моментов геометрически И представлены площадями, ограниченными соответственно диаграммой статической остойчивости и кривой плеч кренящего момента, а также осью Определение динамических углов крена по ДСО и ДДО при условии, что статистический кренящий момент равен моменту восстанавливающему, представлено на рисунке 4.3 и рисунке 4.4 соответственно.

$$heta_{CT1} = 13^o$$
 - точка устойчивого положения равновесия $heta_{CT2} = 84^o$ - точка не устойчивого положения равновесия $heta_{\it A} = 24,5^o$ - динамический угол крена от динамически приложенного кренящего момента, наклонение с прямого положения

Определение динамического угола крена от динамически приложенного кренящего момента по ДСО и ДДО для случая, когда судно накренено на наветренный борт на угол равный амплитуде бортовой качки, представленно на рисунке 4.5 и рисунке 4.6 соответственно.

 $\theta_{\rm Д} = 38^{\rm O}$ - динамический угол крена от динамически приложенного кренящего момента

<u> </u>			
Изм	Ред	№ Докум	Подпись

4.10 - Определим критерий погоды.

Учет критерия погоды производится по старым правилам при условии, если судно было заложено до 1 июля 2002г.

Судно стоящее лагом к волнению и ветру должно не опрокидываясь противостоять бортовой качке и динамически приложенному давлению ветра.

Волны будут качать судно с амплитудой θ_{2r}

$$\theta_{2r} = k \cdot x_1 \cdot x_2 \cdot Y$$
$$\theta_{2r} = 18.6^{\circ}$$

В тот момент, когда судно качнулось на один борт, со стороны этого борта налетает шквал, который создает кренящий момент $M_{\scriptscriptstyle V}$

 $M\kappa p$ создается силой давления ветра p_{ν}

$$M_{_{\kappa p}}=0,\!001\cdot p_{_{V}}\cdot A_{_{V}}\cdot z_{_{V}}\,,$$
 где $A_{_{V}}$ -площадь парусности
$$z_{_{V}}$$
-плечо парусности
$$M_{_{\kappa p}}=0,\!001\cdot 1173\cdot 1100\cdot 6.09=7858 H\cdot M$$

Причем кренящему моменту $M \kappa p$ соответствует плечо $l_{\kappa p} = 0.17 M$

По рисунку 4.7 определяем плечо опрокидывающего момента l_{one} по ДСО

$$l_{onp} = 0.34M$$

По рисунку 4.8 находим плечо опрокидывающего момента l_{onn} по ДДО

$$l_{onp} = 0.34M$$

Критерий погоды определяется, как отношение опрокидывающего момента к кренящему.

$$K = \frac{M_{onp}}{M_{\kappa p}} = \frac{l_{onp}}{l_{\kappa p}},$$

где К – критерий погоды

$$K = \frac{0.34}{0.17} = 2 \ge 1$$

Учет критерия погоды производится по старым правилам при условии, если судно было заложено после 1 июля 2002г.

Судно находится под действием постоянного ветра направленного перпендикулярно ДП, которому соответствует плечо $l_{\rm wl}$ кренящего момента.

От угла крена вызванного под воздействием волн судно начинает крениться на противоположный борт, равный амплитуде θ_r

$$\theta_r = 109 \cdot k \cdot x_1 \cdot x_2 \cdot \sqrt{r \cdot S}$$

				Л
Изм	Ред	№ Докум	Подпись	

Рассчитаем параметр г.

$$r = 0.73 + 0.6 \cdot \frac{Z_g - T_\theta}{T_\theta}$$
$$r = 0.73 + 0.6 \cdot \frac{6.89 - 5.08}{5.08} = 0.94$$

Рассчитаем инерционный коэфициент.

$$C = 0.373 + 0.023 \cdot \frac{B}{T} - 0.043 \cdot \frac{L}{100}$$
$$C = 0.373 + 0.023 \cdot \frac{16}{5.08} - 0.043 \cdot \frac{103.7}{100} = 0.4$$

Рассчитаем период бортовой качки T_{θ} .

$$T_{\theta} = \frac{2 \cdot C \cdot B}{\sqrt{h}}$$

$$T_{\theta} = \frac{2 \cdot 0.4 \cdot 16}{\sqrt{0.76}} = 14.7$$

Для судов неограниченного района плавания по периоду бортовой качки из таблицы Регистра выберем безразмерный коэфициент S.

$$S = 0.05$$

Вычислим амплитуду качки:

$$\theta_r = 109 \cdot 0.92 \cdot 0.91 \cdot 0.89 \cdot \sqrt{0.944 \cdot 0.05} = 17.6^{\circ}$$

Плечо кренящего момента вычислим по формуле:

$$\begin{split} l_{w1} &= \frac{p_V \cdot A \cdot z_V}{1000 \cdot g \cdot M} \,, \\ \text{где } z_V &= z + T/2 \\ z_V &= 6.09 + 2.54 = 8.63 \text{\textit{M}} \\ l_{w1} &= \frac{504 \cdot 1100 \cdot 8.63}{1000 \cdot g \cdot M} = 0.1 \text{\textit{M}} \end{split}$$

Плечо кренящего момента от порыва ветра:

$$l_{w2} = 1.5 \cdot l_{w1}$$

$$l_{w2} = 1.5 \cdot 0.1 = 0.15 M$$

По рисунку 4.9. определяем значение а и b и находим критерий погоды по формуле:

$$K = \frac{b}{a}$$

$$K = \frac{1142}{b324} = 3.52 \ge 1$$

Критерий погоды удовлетворяет требованиям Регистра.

Критерий погоды по новым правилам можно рассчитать аналитическим путем. Для этого необходимо вычислить площади а и b.

На рисунке 4.10. приведена диаграмма динамической остойчивости со всеми необходимыми построениями.

$$b = l_{d50} - l_{d\theta2} - l_{w2} (\theta_{50} - \theta_2)$$

$$b = 0.34 - 0.02 - 0.15 \left(\frac{50 - 12}{57.3}\right) = 0.221$$

$$a = l_{d\theta1} + l_{w2} \left(\frac{\theta_2 - \theta_1}{57.3}\right) - l_{d\theta2}$$

$$a = 0.01 + 0.15 \left(\frac{12 - (-4)}{57.3}\right) - 0.02 = 0.062$$

Найдем критерий погоды:

$$K = \frac{b}{a}$$

$$K = \frac{0.221}{0.062} = 3.52 \ge 1$$

Критерий погоды удовлетворяет требованиям Регистра

Изм	Ред	№ Докум	Подпись	